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Abstract:

While there is many commercial software available for image stitching
(alignment/registration), there is a lack of reliable or high performance software for the
alignment of images with varying exposure, for use in multiple exposure High Dynamic
Range image composition. This project will look at existing software for this task, or that
could be adapted for this task, and existing algorithms in academia or design that could be
adapted for a high performance implementation via use of a GPU, by using a framework
such as OpenCL or CUDA. Results show in more cases than not, the new algorithm is able
to align images faster by using the GPU, depending on number of images, and image size.
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1. Introduction

1.1. Background, Motivation and Aim of Project

Modern cameras capture an image by exposing a digital sensor to the light from a scene
through a lens. During an exposure, a sensor is unable to capture all information from some
scenes because the levels of light hitting the sensor can be so varied from part of the image
to another. Usually this is caused by sources of light directly in the scene, indirect sources
such as windows and reflections, or by very dark parts of a scene such as shadows being
cast over some objects. Some sensors have a greater range of light they are able to capture.
An extreme example is provided in Figure 1 below.

Figure 1. Under and Over Exposed Image.

Some hobbyists or professionals overcome this by taking multiple photos of the same scene
with different exposure levels, to capture the darker and lightest parts of a scene. These
photos can then be combined/overlayed in software to produce a final image with all of the
detail of the scene as what would be visible to the human eye observing the scene.

Often between the exposures, there will be some movement in the camera position, causing
the images to be misaligned slightly such that they can’t be overlayed to produce an image.
The images then have to be aligned before they can be overlayed. There is existing software
for this purpose, however it often fails, or is very slow in its computation. (See section 3.1 for




details). In this project, | propose a new algorithm (and software) to achieve the alignment
faster and more reliably than existing software, by using the power of GPUs which can be
used as massively parallel SIMD processing units that can far exceed the computational
performance than today's CPUs and are present in almost all computers at time of writing.

1.2. Deliverables

The algorithm and software for the task of aligning multiple images will be the artefact for this
project. Other deliverables will be listed below.

e Software and Algorithm requirements

e Research on existing commercial software

e Research on existing academic image registration algorithms

e Testing against requirements including detailed performance analysis

1.3. Constraints

e Limited access to a variety of hardware to test the GPU accelerated program on.

o While this project is intended to be ran on standard consumer-grade
hardware, wider testing should be done to ensure solid performance and
compatibility over a wide range of systems.

e Time will be a large constraint on this project. Many sections will take a lot of research
and experimentation

o Learning C++

o Learning the GPU framework (Likely OpenCL or CUDA)

o Assessment of existing academic image alignment/registration algorithms

o Testing and iterative performance improvements to the software.

e Gathering user requirements will be a challenge due to problems in finding other
hobbyists to gather requirements and test the software.

1.4. Project Approach, Plan and Risk

The project plan can be seen with times in Appendix 4. Tasks will be detailed below.
1. Investigate current software and gather performance and usability metrics.
2. Contact hobbyists (target audience) to gather a list of usability requirements.

a. During this and until task 5, experimentation of C++ and the GPU framework will take
place so that | can gain experience in the technologies, since | have no current
experience.

3. Investigate current algorithms for image stitching and tone mapping, implement the stronger
ones for performance testing and quality testing of the final image.

4. Using requirements and performance metrics from other software, generate a testing plan to
ensure requirements has been met.

5. Design the new image stitching and tone mapping algorithms, based around OpenCL

6. Implement the above algorithm and iteratively optimise for performance as time allows.
Testing for every version with improved performance or test success rate.

7. Validate the project over the user requirements

8. Review the new solution against existing solutions, and retrieve end user feedback. Analyse
the project and the solution separately as to what could be improved, and what.




Risks table can be seen below.

Risk Description Mitigation/Control First Indicator Severity and
Likelihood /3
Collection of User Gather more potential users | Requirements are bare and | 2-1
requirements, Unable to using online forums. have little coverage
gather sufficient
requirements from users
Falling behind due to Use contingency time to Illness 1-1
Illness, Unable to work recover
Difficulty in understanding | Seek help from supervisor Exceeding allotted time 2-2
stitching or tone mapping and lecturers from the project plan for
algorithms research of algorithms
Misunderstood C++ and Seek help from online Unexpected results from 3-1
OpenCL processes tutorials program, falling behind
deadlines
C++ Compiler Seek help from supervisor Unable to add new 2-2
troubleshooting issues libraries, use functions due
to C++ build complexity
In-efficient algorithm Use contingency time to Performance improvements | 2-2
design develop a new algorithm. from optimisation at
implementation stage
becomes stagnant in an
unsatisfactory state
Loss of project due to Keep incremental backups Can have no indicator 3-1

hardware, software or
environmental disaster

of development
environment using off-site
clone

Table 1. Risks table.




2. Literature Review

2.1. A brief overview of algorithm types

2.1.1 Single/Multi-modality methods

The topic of image registration is a very well studied, and many types of
algorithms exist to align images, even when the images may not be from the same
source, such as overlaying CT and ultrasound images. This is called multimodality
image registration. (Apicella, Nagel, Duara, 1988, p. 414). This project will only be
using data from one sensor, so only single-modality algorithms will need to be
considered, however since the sensor parameters will be different for each exposure,
some techniques may need to be borrowed when building the new algorithm.

2.1.2 Automatic/interactive methods

Automatic methods can align images based on only the image set itself and
do not need human aid in aligning. Interactive methods usually require the user to
find some common points in the image, which guide the algorithm through iterations
to get a good alignment. (Gering, 2006) All of the software evaluated in the
requirements did not require human interaction to get an alignment (although some
software had the option of manually specifying points to aid the alignment), so
another requirement of the software will be that the algorithm will be fully
automatic.This is extra important for cases where you have many multiple images
and manual alignment would be very time consuming.

2.1.2 Intensity/feature-based algorithms

The two main types of algorithms for image alignment are defined as Intensity
or feature-based. Intensity based matches work by applying different transformations
to an entire image, and measuring its alignment (also called fitness) at each
translation, and applying new translations based on the previous to find a perfect
translation. (Kappor, n.d.) Feature based matches work by finding distinct/unique
sections of one image and then trying to find the same part in the second image.
More detail on these in the next section.




2.2. Basic CPU VS GPU Architecture and Memory system

Modern CPUs have a small number of large, very fast, complex cores and a very
complex memory caching system, comprising of multiple levels, usually 3, and sometimes up
to 4 levels between main memory and the CPU'’s registers. (Kirsch, 2015). This is very good
for single, or very lightly threaded sequential programs. This doesn't usually make a
difference in to how programs are written for these platforms.

Alternatively, GPUs are comprised of hundreds or thousands of smaller and simpler
ALU’s with a much less cached memory layout, instead leaving this task to the programmers
to pin important data to the faster on-die memory oppose to the slower (usually GDDR
based) memory. There are some notable exceptions to this such as CPUs with integrated
Graphics processors that use normal system DDR as its main memory instead of GDDR.
Another notable exception to this is GPUs that use HBM (High Bandwidth Memory) where
the memory chips have a much wider data bus than standard GDDR and are on the same
substrate or interposer as the GPU die (Smith, 2015). These differences do not usually
translate in to differences in code for the different platforms, however, but do change the
characteristics in latency and throughput of the main memory available to the GPU.

For image registration, GPUs give promise of higher performance due to their
massive increase in compute performance and memory bandwidth, and the very parrelisable
nature of some of the image registration algorithms available today. Many researchers have
ported existing algorithms and designed new ones for their specific use case and image
properties (ie, single/multi-modality, Rigid/non-rigid, 2D/3D etc) (Fluck, Vetter, Wein, Kamen,
Preim & Westermann, 2011). The rest of this review will be focused on creating a new one
optimised for the specific aim of aligning multi-exposure images with small misalignment for
use in multi-exposure HDR photography.

2.3 The Image Registration Recipe

Image Registration algorithms are built using 3 main sub-algorithms, and some
optionaly some preprocessing. (Shams, Sadeghi, Kennedy & Hartley, 2010) and (Crum,
Hartkens, Hill, 2004) The 3 main sub-algorithms are the alignment measure, the translation
function, and the optimiser. The roles of these are described in the image below.




Initial Transform paramaters Generate new Transform Apply Shifts/Rotates/Scales Measures the new transform over ‘Winning Measure function(s)
(prehaps given by user, or set to no Paramater(s) (Through Gradient and other to the image to fit against the base image (Using SAD, (with highest fitness) have
transform) (optional) Decent, Derivitive, GA or other over the base image SSD, NCC or other method) their Transform paramaters
& method) based on previous fed back to the Optimiser
paramater with highest score(s)

Optimiser finishes after some pre-defined condition is met, such as number
of iterations, time elapsed or change in fitness reaches a set value.

Figure 2. Basic Image Regqistration Algorithm

2.3.1 The (Alignment/Similarity) Measure

The (Alignment/Similarity) Measure is responsible for giving a score to a
certain image transformation, indicating how aligned the current transform is. This
can be called the fitness of the transformation. As discussed above, there are
intensity and feature based methods of measuring the alignment. (Fluck, Vetter,
Wein, Kamen, Preim & Westermann, 2011) found that (as of 2011, there are likely
more as of writing) there was only one paper that implemented feature matching
(Ruiz, Ujaldon, Cooper & Huang, 2009). This was done by taking sections of an image
and using intensity measures to find local alignment of these sections. Other papers
use intensity measures over the whole image to get better accuracy, and the
increased parallelism this gives.

Intensity measure is the most common way of calculating the fitness of the
transform, but can be split up in to different methods again. (Fluck, Vetter, Wein,
Kamen, Preim & Westermann, 2011) briefly details the methods. SSD (sum of
squared differences) and SAD (sum of absolute differences) is fairly self explanatory,
and its cost can be easily calculated, see table below. These are good due to their
low complexity, but suffer from not compensating for a change in brightness, contrast
or exposure, so these may have to be ruled out if we can’t compensate for the
change in exposure before the alignment process is started. See 4.3 for details on
this. NCC is the other method of interest, as it can compensate for the change in
contrast in the images we will have to process. The final method is MI (Mutual
information), which can accomodate for multi-modal registration. While this would
also be able to cope with the non-fixed exposure of our images, because of its
advances capabilities, it becomes more complex and slower to process, so it will be
ignored from here onwards.

Key:
n = number of pixels (in a 2 dimensional image)
x[n] = image1 pixel number ‘n’
y[n] = image2 pixel number ‘n’




Method | Formule Rough Complexity | @ Complexity
SSD 2 (x[n]-y[n])? n minus, O(n)
n indices (square),
n addition
SAD Zabs(x[n]-y[n]) n minus, O(n)
n absolutes,
n addition
NCC Y~ Liin] = v[n] 2n squares, o(n)
ThE TR R n+1 multiplications,
j\_n—l 02, sa—Ll 12 3n additions,
N Ln=0" [7] Lp=0) [] 1 indices (sqrt),
NCC formule: (Understanding 1 division
Cross-Correlation,
Auto-Correlation, Normalization
and Time Shift, 2016)

Table 2. Similarity Measure performance table

A quick note on NCC:

NCC is a way to compare the similarity between two time series
(Understanding Cross-Correlation, Auto-Correlation, Normalization and Time
Shift, 2016) and can work across multiple dimensions (Hii, Hann, Chase & Van
Houten, n.d.). It has various different implementations due to its complexity,
such as by using a fast fourier transform. (Hii, Hann, Chase & Van Houten,
n.d.) showed that it's possible for different methods such as their “sum tables”
to give over an order of magnitude quicker runtime as compared to using an
FFT on their specific hardware.

We can see from the above that SAD is the simplest and fastest operation,
and NCC is the most complex. However this does not take in to account the time
penalty for memory access. For SAD and SSD, the amount memory accesses is
easy to see, but for NCC, since some values can be cached between calls, this is
much harder to calculate, and varies depending on how its implemented. Thankfully,
all of these algorithms are done in linear time complexity, so (assuming they all good
at generalising the translation score) none of these are a bad idea to use, although
maximum speed would be achieved using SAD if exposure could be compensated
for prior ot alignment. See 4.4 for details on this.

2.3.2 The Transformer

The Transformer is responsible for applying a transform (rigid or non-rigid) to
the an image over a static base image such that the similarity measure detailed
above can calculate the similarity of the two images. The transformer may apply
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different translations and warps to the image on any axis, depending on what's
needed for correct alignment of the image. For example, it may move image one, 5
pixels to the left, 4 pixels down, rotate by 1 degree over the static base image.
Non-rigid transformations can also contain scaling (sometimes called zoom) of an
image size and shear of an image (Ashburner & Friston, n.d.), section 2.3. There are
many techniques for non-rigid translations, and the parameters can get much more
complex. Usually, they rely on multiple data points over an image, with its own
independent translation which best describes the image deformation at its location.
These are known as control points. Very simply put, this list of translations at the
control points are then interpolated using various different methods such as B-splines
(as used in computer graphics) to get a translation for each pixel in the image, at
which point the image can then be translated and the intensity of the new pixels
generated. Some methods change the translation at the control points based on the
values of control points, and some methods such as the Demons method, try to
emulate how a viscous fluid would deform, and the methods used can vary
depending on the content of the actual image. (Crum, Hartkens, Hill, 2004), S143.
The translations for this project will be very minor, and will be fully rigid, because the
movement of the camera between exposures will be minimal.

It's likely that the user will not be able to keep a camera at a set rotation, as seen in
figure 3, 4 and 5.

=B}

Figure 3. Camera | Eigure 4. Camera | Eigure 5, Camera
rotation 1 rotation 2 rotation 3

A user will also be unable to hold a camera in a constant x/y/z plane in 3D
space, however this movement will not create any visible change in image, especially
at longer distances between camera and subject, such as landscape photography, (a
very common use case for multiple exposure HDR photography). This means the
only translations we will have to be accounted for in the program are the three
rotations mentioned above.

To see how these rotations change the output image, some sample images
have been taken against a grid so that the distortion between exposures is clearly
visible. By holding the camera of a wide (full frame equivalent) 24mm focal length
(where the effects of lens distortion would be most prominent), and by adjusting its
angle by around 2% (noticeable for the user, and unlikely that a user would
knowingly change the angle between shots (using an exposure-bracketing mode)
greater than this), we attempt to overlay these two images by only using x-y
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translation and rotation to see if there is a sheer component needed for alignment.
For clarity, the second image has had its colours inverted so any misalignment will be

bright and obvious.

Results: Full Size images are available in the Appendices 1,2,3

Settings: 18mm

Settings: 35mm

Settings: 55mm

Translation: 9x, 50y, Or Translation: 6x, 142y, | Translation: 67x, 243y,
-0.35r -0.37r
See Appendix 1 See Appendix 2 See Appendix 3

Table 3. Image transform table

As you can see, by the basic x-y-r alignment noted above, most of the images
are able to be aligned. The effects of lens distortion can be seen at 18mm, that
introduce a non-uniform transformation across the image. This would require a
non-rigid transformation. However, with the longer focal lengths, the lens has no
distortion, and the images (35mm and 55mm) are aligned almost perfectly. It must be
noted however that a sheer component is introduced in the alignment when trying to
align images taken with a camera using Sensor Shift image stabilization. In most
cameras however, this can be disabled.

2.3.2 The Optimiser

The Optimisers purpose is to minimise the amount calls to the transformation
and measure parts of the algorithm, in order to find the optimal (or heuristic) solution
(transform parameters) to the problem. The transform and measure can be thought of
as a bounded function and the optimisers job is to find the global minimum/maximum
of the function (Introduction to Optimizers, 2018), while doing as little calls to the
function (transform and measure) as possible. This is a well-known problem that has
been researched extensively, and is not inside the scope of the paper, but we will
briefly give an overview of Gradient Descent due to its simplicity.

An exhaustive search for all except the most basic problems is almost
impossible, due to either the size of the search space, or the complexity (and hence
computation time) of the function (in this case, the transform and measure function).

Gradient Descent is one of the most basic algorithms, and one of the easiest
to implement (except for an exhaustive search). It calculates the gradient of function,
and uses that to estimate where function reaches its max/min value, and applies this

12



iteratively until it reaches either a perfect solution, or a minimum gradient change, a
set number of iterations, or some other heuristic like time.

Genetic Algorithms applied as an optimiser are also worthy of a note here, as
is lends itself to a large amount of function calls in each iteration (known as
generation). However to limit the number of generations, the Genetic Algorithm would
have to be customised alot for this specific application.

13



3. Requirements and Testing Methodology

This section entails how success of the final product will be measured, and compared
against current existing solutions. The role of the customer will be taken on by me, and
several anonymous colleagues with an interest in photography. The aim of this project is to
create a high performance, high efficiency algorithm for image registration, so the emphasis
will be on performance requirements.

3.1 Performance Requirements

Multiple Exposure HDR photography follows the basic premise (as detailed in the
introduction) of combining several standard dynamic range images and overlaying them.
Therefore the only way to test a successful result from software was to create some sample
images that would be used to test them. The sample images are available in appendix.

The next step in creating requirements for this project was to analyse existing
software on our test images. The table below shows the times for the different sets of
images using different software. | will be evaluating most popular existing software.
Comparison of photo stitching software. Retrieved from (Comparison of photo stitching
software, n.d.), along aside the opencv implementation for image alignment. This will help
build some quantitative performance requirements for the project.

Notes:

e i2Align Quickcharge was excluded from the testing due to no trial option being
available.

e Stitcher Unlimited was excluded from the testing due to no longer being sold or
available for download.

e The OpenCV implementations was using the details as follows:

e int number_of_iterations = 5000;

e double termination_eps = 1e-6;

e Using faster values would result in incorrectly aligned images. These were the
fastest values that produced correct alignment.

e PTGui software has the potential to correctly compile a HDR image, however this
only worked on image sets 3,4,5 and 6. On other test sets, it would instead would
give the following error. “All source images were taken with the same exposure
settings...”

e Values provided below up to 3 significant figures where available.

e Cells in red and underlined indicate a incorrectly stitched image or an image with a
significant artefacts or warping, making the result unsatisfactory.

Device # of | Autopano | PTGui Easypano Hugin for | Desktop | Tablet Samsung Canon EOS
Hardware | images Pro b Panoweaver | Panorama (1700x) (m5-6Y75) | S7e *** M1
Tools
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Method # of | Tone Tone Tone IMAGE IMAGE ALIGNMENT | In-phone In-camera
images mapping mapping mapping ALIGNMENT | ONLY HDR HDR
and and image | and image | ONLY
image alignment alignment OpenCV TONE TONE
alignment Feature (findTransformECC, MAPPING MAPPING
Cubic Matching MOTION_EUCLIDEAN | ONLY ONLY
Panorama ‘Hugin’s )
CPFind’
Output/Stitch
Image 3 7.87s ~1s ~2s 11.5s 27.3s 63.0s <0.25s 8.40s
Set 1
Image 4 22.18s ~1s ~bs 12.6s 51.3s 99.9s <0.25s 8.30s
Set 2
Image 4 22.68s ~1s ~5s 14.6s 254s* 401s* <0.25s 8.50s
Set 3
Image 3 2.33s ~1s*** ~3s 5.2s 3.52s 5.05s <0.25s 8.20s
Set 4
Image 50 277s ~23s Failed 819s N/A** N/A™* N/A N/A
Set 5 (No
Exposure
Change)
Image 8 34.0s ~3s 15.1s N/A N/A** N/A** N/A N/A
Set 6 (No
Image
misalign
ment)

Table 4. Software Performance Results Table

1.

wn

*Possible memory thrashing here, resulting in the excessive times.

**These tests were not run due to time constraints.
***While the ‘HDR’ function on the Samsung S7e, its performance indicates
that it is unlikely taking multiple exposures to generate a HDR image, when
taking into account the relatively low computational power in comparison to a
standard computer. | am also unable to find any technical documentation on
what this specific ‘HDR’ function does. For these reasons | will be discounting

its results.

****PTGui for this test just set the output image to the first input image, since it
could not get an alignment with the other images in the set.

Concluding these results, it appears that none of the softwares tested were able to

stitch and tonemap all of the test image sets without any defects. It also shows that algorithm
time is roughly inversely proportional to the chance of getting a satisfactory output; Of

Course there are oultliers.

implementation.

This helps set the performance requirements for the

Image Set Fastest Software for | Time target
Image Stitching and Tone
Mapping a successful
result

Image Set 1 Autopano Pro 7.87s
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Image Set 2 Autopano Pro 22.18s

Image Set 3 Hugin for Panorama Tools 14.6s (image alignment
only)

Image Set 4 Autopano Pro 2.33s

Image Set 5 (No Exposure | PTGui ~23s

Change)

Image Set 6 (No Image | PTGui ~3s

misalignment)

Table 5. Software Performance Requirements Target Table

3.2 Functional and Non-functional Requirements

The overarching requirements for this project are fairly simple, as the aim is to create

some image stitching software that takes use of a GPU compute device for performance
improvements over standard sequential or parallel CPU solutions that exist today. Basic
requirements will come from analysis of existing software, and further requirements will
come from anonymous interviews.

Requirements from existing software.

The software must be able to stitch as many photos as the user requires to create the
HDR image. Usually this value is 3, as this is what is used by in-camera “exposure
bracketing functions” to take multiple photos of varying exposure automatically.
However there is no reason to limit this, and the software investigated above can
work with many more, so the new software should be capable of this also. We will
test up to 8 photos in the examples, but should have the option to do more.

The software should be able to work with up to 50Mpx images and beyond, as some
cameras today are capable of creating images of this resolution. (Canon EOS 5DS R.
n.d.) The size of the images created by the program should not be artificially limited
as image resolution from cameras is likely to continue to increase. Non-professional
consumer cameras such as found in phones are able to take photos of around
16Mpx.

The software should be able to run on any OpenCL capable system, and have a
CPU fallback algorithm if OpenCL is unavailable at run-time. The CPU algorithm
must also be performant, and not render the program useless or inconveniently slow
in cases where OpenCL is not available. (CUDA would be a viable alternative to
OpenCL, however it's not supported on as many machines, due to it necessitating a
GPU manufactured by Nvidia. This would limit the potential install-base for the
software.)

All the existing software has the basic functionality expected from such a program,
such as selecting images, previewing the result, saving.

16



o Due to time constraints, no GUI will be provided (apart from the preview). The
program will be ran using a config file or a command line argument to specify
input images.

The images accepted must follow the output for a standard consumer camera

o JPEG, RGB/RGBA channel information, 8-bit depth per channel, (24/32 bits
per pixel)

Most software tested has a task indicator, showing how much of the processing has
been completed, the new software should match this in functionality.

Most software tested has a variation on blending mode, which dictates how the final
image is computed based on the aligned input images. This is sometimes referred to
as tone mapping, and will be referred to it as tone mapping in this document.
Different algorithms produce different styles and looks. A basic “average pixel”
method must be implemented at least, with more algorithms being desirable.

Requirements from anonymous user interviews, that have not already been captured by the
requirements listed above.

Software must work on Windows 10

Software must be fast to startup (<10 seconds)

A live preview of image with sliders for tone mapping parameters
Save as 8-bit jpeg or 10-bit jpeg

Support full-screen preview

Support a no-alignment mode for only-tone mapping functionality.

The above sections was used to build the functional and non-functional requirements lists

below.

“Must Have” requirements

1.

ok own

Merge at least 3 images

Merge images with a resolution of at least 16Mpx

Run on OpenCL enabled systems (Windows 10 will be used in testing)

Save the output image

Ability to specify input images, for example, via command line argument, or in a
config file.

A basic “average pixel” tone mapping algorithm to merge images once aligned.

“Should Have” requirements

1.
2.
3.

o

Merge at least 8 images
Merge images with a resolution of at least 50Mpx
Run on all modern computers (2 x86-64 CPU cores, 8GB RAM, no dedicated-GPU,
Windows 10 will be used in testing)
a. Performance should be no more than 10x slower than the OpenCL
implementation.
Preview the output image before saving
Contain an indicator of processing time or processing complete percentage.
A more advanced tone mapping algorithm with parameters to change style and look

17



7.

Save images as 10-bit JPEG

“Would Like” requirements.

1.

2.
3.
4

Merge beyond 8 images

Full GUI with live previews, and sliders for adjusting the tone mapping settings
Support full screen previews of images

Support a no-alignment mode for where image registration/translation is not required.

18



4. Design

This section relies heavily on details outlined in the Literature Review (section 2).
Overall design can be seen in section 4.7, more detailed design is noted below in section 4.1
to 4.6.

4.1. A Quick note on Optimiser Speed

Improvements to the Optimiser will result in less calls to the transform and measure.
The same improvements to an optimiser from one image registration will almost always
apply to another algorithm. As detailed in section 2.3.2, there are many different types of
optimisation and is a large topic in itself, so improvements to the Optimiser will be out of
scope for this project.

4.2. Marriage of the Transform and Measure functions

In (Shams, Sadeghi, Kennedy & Hartley, 2010), it's proposed that by merging of the
Transform and Measure functions can reduce computation time. In this case, the Transform
function would not have to save each image’s translation to memory, so that the Measure
function can load it to calculate its fitness. If these functions were merged, the measure
could be calculated at the same time as the transform was done, with the benefit of much
less memory usage, as the transform results for each pixel are never needed to be saved,
instead each pixels value can be summed to the measure result.

4.3. Pre-Compensating for Exposure

In (Fluck, Vetter, Wein, Kamen, Preim & Westermann, 2011), it's noted that the
advantages of using NCC was that it was able to find similarities in images with varying
brightness and contrast, unlike the simpler, but faster SSD and SAD methods. In this project,
we will attempt to correct the images to be have the same brightness and contrast by
altering the gamma of the image. This means while we have an extra fixed computational
cost for each image, we can use the much simpler and faster SSD or SAD methods. This
reduces the computational complexity of the algorithm. To calculate and adjust the image for
gamma, we first find the average brightness of each image by sampling a subset of the
image pixel intensity value. By passing these values through the gamma function, we can
get a value for gamma (y).

Gamma = v
Average image pixel intensity (between O and 1) = img(base) or img(R)
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Image pixel intensity (between O and 1) = base_img[i]l or n_b_imgl]

v = logl(img(base)) / loglimg())
The non-base image is then passed forwards through the function using the gamma

value, to get a new image with similar brightness and contrast characteristics as the base
image.

4.4. The Measure Function

In section 2.3.1, SAD was suggested as the fastest similarity measure. Because
difference in exposures of the images is already taken into account of in section 4.3, SAD
can be used, and it's very high performance characteristics can be taken advantage of.

4.5. Image Subsampling

As the image alignment is iterative, the first few iterations have quite large differences
in the translation parameters, which get refined over time.This means the full image detail is
not necessary to get a rough measure of the alignment in the first few iterations. Therefore,
by reducing image size, by subsampling it, we can reduce the cost of sending the image to
the GPU, reduce the cost of the transform and measure drasicaly, for the lower accuracy
iterations.

4.6. OpenCL’s image2d_t location-based cacheable data type, and
interpolation

OpenCL provides the programmer with several data types that abstract less of the
hardware, instead exploiting the low-level access granted by the interface to increase
efficiency of the hardware. One of these data types is Image2D (Other Built-in Data Types,
n.d.) Image2D’s advantages are that it can use hardware texture mapping units that are
already built in to GPU devices and that have been for many years. These texture mapping
units are optimised heavily in hardware for the specific task of loading and transforming
textures (images), and the physical memory die that supports them is usually faster than the
standard global memory (Sellner, J. 2017). Therefore using these to store the images when
being transformed and compared against each other (transform and measure functions)
should be much faster than using the standard global memory, and doing the
transformations in software using the general purpose ALUs present on the GPU.

4.7. New Design
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The new design will incorporate the above optimisations applied to the standard
image registration algorithm from Figure 2 in section 2.3. Figure 6 displays the new algorithm
pictoraly. Basic pseudocode for the program is given below.

Load images as grayscale to reduce unnecessary | -=.. -
information and increase data-density. Lcad ima ges

Calculate the difference between image
exposure using the gamma formule, for

each image, using 3 base image 353 Calculate exposure
reference. ' .
difference and adjust

Apply the gamma correction to each image,
to match the reference image.

FOR every image in the image set

WHILE image (as compared to the base
image are un-aligned

Get initial/best misalignment vector
from the previous iteration

Generate new alignment vector(s)
for testing (Optimiser)

Apply transform and measure on
image(s) to get an alignment score
(Transform and Measure)

Apply image on to base image using the
misalignment vector, and tone map
settings

Save image

Figure 6. Full Program Flow

1. Load images as grayscale to reduce unnecessary information and increase data—-density-.
2. Calculate the difference between image exposure using the gamma formule, for each
image, using a base image as a reference.
3. Apply the gamma correction to each image, to match the reference image.
4. LOOP (FOR every image compared to the base image)
a. LOOP (WHILE image as compared to the base image are unaligned)
i.  Get misalignment vector (initially set at Ox, Oy, Or)
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id. Generate new alignment vectors to test, based on current alignment
vector, and current image sample rate/resolution.
iji. Transfer grayscale images to the OpenCL device, then perform the
transform and measure functions to generate an alignment score
ive Pick the best alignment score, and get its corresponding misalignment
vector.
b. Apply image on to base image using the misalignment vector and tone mapping
algorithm.
5. Save Image
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5. Implementation

5.1. The Development Environment, Language Choice...

For the implementation, C++ was used for its native OpenCL bindings and cross
platform support. Python was considered as an option, but lacks in speed when compared to
C++ and other 3rd Generation programming languages, and since the aim of this project is
to create a fast and efficient HDR image alignment algorithm.

The development environment was Windows 10 using Visual Studio 2017 and its
inbuilt compiler, using -O2 optimization flag. OpenCL version 2.0 was used.

5.2. A note on the development lifecycle

The intent for this project was to use lterative development, because once a working
project is established, each iterations focus can be on improvements to the algorithm. With a
more classical/standard development model such as waterfall, which makes alterations to
the code (such as efficiency improvements) a much more laborious. In practice however, a
waterfall cycle was needed for the first section, as large sections of the program could not be
tested properly until most of the program was built (for example, the optimiser can't be tested
until measure function is built). Once the project had reached a state where its performance
could be tested (and hence requirements could be tested), a iterative development cycle
was used to port the existing transform and merge function to OpenCL, and used until the
performance requirements had been met.

5.3. Initial Implementation

For the first version of the program, the initial transform and measure algorithms are
written as CPU functions, to test that the logic works as intended. OpenCL programming
requires much more time, and so CPU algorithms also allow testing of this basic logic
quicker.

Since my experience with C++ and OpenCL before starting this project was
non-existent, a large of the time allocated (See Appendix 4) was designated to learning of
the language and tools. Initial experiments were as follows

1. Loading an array to the OpenCL device, and retrieving it
2. Converting an Image to an array, copy and retrieve from the OpenCL device.
3. Above but with basic distortion using the OpenCL kernel.

Once confident with C++ and OpenCL, initial implementation was started, and
progressed in the following order, since the later parts of this list were unable to be tested
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until the the supporting code was in place. Small details on each sections implementation
are detailed below.

5.3.1 Load images using OpenCV and display

a. Wrapper functions for converting between OpenCVs Mat object and a
standard C++17 vector were created very early on to help keep the codebase
clean. Several of these were implemented depending on the type of image.

5.3.2 Convert Images to grayscale (using an OpenCYV function)

b. This is a pre-existing function within OpenCV so no detail on this will be given
here

5.3.3 Build image the brightness/compensation function

c. This was comprised of two parts, by using pseudocode from section 4.3

i. get _image_average_brightness() Getting the average brightness,
done by averaging a sub-sample of the images grayscale pixel
intensity values. (Sample rate used is 1%, yielding a theoretical
performance improvement of 100x as compared to a sample rate of
100%)

i. normalize_brightness() Takes each image, uses the above function to
get average brightnesses, then using the pseudocode below for
calculating gamma corrections for brightness, assuming image
bit-depth of 8 (0-255 intensity values.

GAMMA = log(pixel_out / 255) / log(pixel _in / 255)
pixel _out = 255 * ( pixel _in / 255)~ GAMMA

5.3.4 Build Similarity Measure

d. Using SAD (sum of absolute differences) function.

e. This involves finding the magnitude of the difference between the intensity of
each pixel, and calculating this as a percentage of possible difference. This is
calculated using the pseudocode below, assuming image bit-depth of 8
(0-255 intensity values)

for pixel-index in image

i = pixel-index

diff = diff + positivelimagel[il - imagellil)
tme = diff #total measured error
tpe = image_size * 255 #total possible error
similarity-score = 100 * (tpe — tme) / tpe
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5.3.5 Build Transform logic in to the Similarity Measure function

f.

Instead of transforming the whole image on to a new canvas, and storing the
result back to texture memory, it should be quicker to transform each pixel
and save the result ot the faster register memory.

Each pixel of one image is to be associated with a pixel from the other, given
the translation vector. The translation vector is given as a shift of x and y
along the x and y coordinates, and a rotation r.

Since the image is stored as a one dimensional array (C++ std::vector), and
translations will be occurring in a 2d space, some translation will need to be
done between these two. Pseudocode is provided below with some example
values for reference. The design incorporates the formule from (Rotation
Matrix, n.d.) in section 1, where it is stated that x’ = x*cos( 0 )-y*sin(6) and
vy’ = x*sin( 0 )+y*cos(0).

int no_of_rows = 1024 #number of rows in image
int no_of_cols = 1024 #number of columns in image
int x = 5 #shift 5 pixels left

int y = =10 #shift 5 pixels up

int r = 3.5 #rotate 3.5 degree clockwise

for row in range(O to no_of_rows-1) step 1
for col in range(0 to no_of_cols-1) step 1
image2x = col + x — (no_of_cols / 2)
imagely = row +y - (no_of _rows / 2)

image2x = image2x * cos(degree_2_radians(r)) - imagely *
sin(degree_2_radians(r)) + (no_of_cols / 2)
imageRy = image2x * sin(degree_2_radians(r) + imagely *

cos(degree_2 _radians(r)) + (no_of_rows / 2)
if imagelx and imagely are inside canvas
imagel pixel_index = col + row * no_of_cols

image? pixel_index = image2x + imagely * image_cols

finally: apply Similarity Measure using SAD

5.3.6 Build function to merge two images based on the translation

Since the function above already translates and compares the two images, it
can be easily adapted to merge full colour images.

The current function would only be able to add two images with equal
weighting. If this function were ran in a loop, with each subsequent image
(image2) being added to the previously merged image (image1), each
subsequent image will have more weighting on the resulting final merged
image. To fix this, the new image (image2) needs to have its intensity scaled
based on how many images have been used to compose the base image
(image1). See Figure 7. Pseudocode is provided below with some example
values for reference.
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jir = #image_intencity_ratio, which is the number of images used in the
creation of imagel
for each pixel in image
for each colour in pixel
Imagelcolour] = (imagellcolour] * iir + imagellcolour]) / (irr + 1)

For every image that needs to be merged. ..

{while new_images is not empty) I'IEW_i magES[]

A >

=image merge( = ,image2,irr=1)

irr = image_intencity_ratio, which is the number of images used in the creation
of imagel, equal to the ammount of loops of this sequence. The value of
irrstarts at 1 and is incremented by 1for each in-order call of image_merge

Figure 7. The image merge function (render_image())

5.3.7 Build Optimiser (to calculate a list of new misalignment
vectors to measure)

k. As stated previously, details and optimisation of the optimiser is out of scope
for this project, but some light details are described below for clarity.

I.  The optimiser takes the current best (or starting translation) along with the
amount of allowed new ftranslations to try, and creates an array (C++
std::vector) of new translations. It does this by creating as many as allowed
evenly distributed between the two boundaries, which are determined by the
previous translation, and the previous iterations resolution/precision
(resolution in this context meaning granularity, not size). For example, if the
previous iterations translation was x=10, y=-25, r=0, with a
resolution/precision of 5px, and 1 degree, then the new bounds for testing are
in from x=5, y=-20, r=-1 to x=15, y=-30, r=1. This is applied until the
resolution/precision reach 1px and 0.05 degree, although these can be
changed to optimise for accuracy of the alignment vs speed of the alignment.

Although the optimiser for this project has three variables to SAD measure
algorithm for, it is explained below in a 1 dimensional space for simplicity.

In Figure 8, the starting optimiser algorithm starts between the bounds 0-5,
with a resolution/precision of 1 (the blue lines). It finds the best result with its
resolution/precision of 1 which is the orange line, at 2. It then creates it's new
bounds, with 2 in the middle and wusing the previous iterations
resolution/precision of 1 to create the new bounds at 1-3 (in green). The
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algorithm can then be called in iteratively until a maximum resolution/precision
is reached. In this example, each iterations is allowed to have 10x the
resolution/precision of the previous iteration, which is why the next best result
(yellow) reaches the value of 2.7 with a resolution/precision of 0.1.

Figure 8. The Optimiser viewed

5.4. Porting to GPU using OpenCL and basic optimisation

C++ has native bindings for OpenCL, so once the programmer is familiar with the
environment, adding OpenCL support should be simple, however in practice, the lack of
tutorials and examples made this harder than first anticipated. More on this in section 5.6.
Since OpenCL is designed to run on all types of SIMD hardware, the majority of which don’t
share memory with the host CPU, memory management is a little tedious. OpenCL code is
based of a subset of the C language, meaning a lot of the data types and data structures
available in C++17 are unavailable on the OpenCL. OpenCL was designed in this way
because targeting a large feature set with more complex instructions will limit the amount of
devices capable of running OpenCL code. OpenCL has a base set of requirements that are
required from a hardware device for it to be called OpenCL compliant, (sometimes referred
to as in-specification or in-spec). OpenCL allows device vendors to add capability to their
devices without going out of spec, by adding optional extensions to the OpenCL language,
such as double precision floating point operations. (Extension, n.d.) Because this project is
intended on targeting most/all OpenCL capable systems, the amount of extensions used will
be kept minimal.

The function in this project that is being targeted for OpenCL as discussed in section
5.3.5 is the transform and measure part of the registration algorithm. In my implementation,
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this is called get greyscale image difference CPU(), which will be renamed as
get_greyscale _image _difference GPU _kernel().

This function takes in a translation vector, and a read-only memory reference the two
images. Since tuples are not supported by OpenCL, three separate arrays are required for
the translation parameters. (A two dimensional array could also work). The only output
required from the transform/measure function is the measure score itself, as the optimiser
will keep a copy of the translation vector used to get each measure score. As shown in
section 5.3.5, the inner loop of this function consists of many integer operations, and a few
floating point operations. Getting the smallest data type capable of computing and storing
the result is important, especially on GPU devices, because the difference in performance
between the datatypes is greater than that of a CPU. This is especially visible when looking
at single vs double precision operations on most consumer GPUs. (Comparison of NVIDIA
Tesla/Quadro and NVIDIA GeForce GPUs, n.d.) Since float is the smallest standard data
type available for OpenCL that supports decimal parts, this will be used for computation of
the transformation..uchar will be used for the storage of each image pixel, and compute of
the difference, since the max value of the possible result is 255, which matches the max
value that can be stored in a uchar. The result will be stored as a unsigned long, since the
next smallest standard data_type is an unsigned int, which is incapable of handling images
over roughly 16Mpx. This is because integer can store numbers up to 4,294,967,294. Divide
this number by a max possible alignment score per pixel of 255, which gives 16,843,008
pixels. The requirements dictate images of over 50Mpx to be computed, so a larger data
type is needed (unsigned long).

OpenCL exposes different types of memory for variables to be stored in, these are
called global (and a variation of this called constant), local and private. (DarkZeros 2017,
August, 2). As a follow on from section 2.2, “Global” memory is visible by all threads, and
can be read and written to. The drawback is that access is very slow, as this memory is
usually on physical GDDR or HBM type memory for a GPU. The “Constant” memory is a
small portion of read only memory that is cached from global memory, and like “global’, it is
available to all threads. “Local” memory is faster than “Global”, is read/write capable, but
only accessible from threads inside the same work group (block) as it was declared in.
“Private” memory is only available to the thread it was declared inside, is read/write capable,
but much faster than every other memory type. In the transform and measure function, the
only memory to be shared across all threads is the two image arrays, the list of translations,
and the output array. All other variables can be declared as private.

5.5. Further Optimisation for OpenCL

The most obvious step in optimisation is to remove calculations from the inner loop
which remain constant through each iteration of the loop. The most obvious example of this
in the transform/measure function is the calculation of the new pixel index when a rotation is
applied. As the in 535 shows, the statements sin(degree_2_radians(r)) and
cosldegree_2_radians(r)) are used twice each in a single loop iteration. This means they can
be calculated once out of the loop, and stored in fast private memory, and called whenever
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needed. This saves 4 sin/cos operations, 4 global memory lookups (r) and a 4
degree_2_radians() calls per iteration. This improvement nearly doubles performance, since
the lookup and sin/cos operations are very time costly.

When attempting to generalise an image, a full sample of the entire image is often
not needed. As explained in the optimiser in section 5.3.7, each iterations will have a
different precision. For smaller precision, smaller resolution samples are needed. This has
the advantage of not having to transfer full size images to the OpenCL device, which is often
very costly, and the advantage of reducing the amount of computations needed from the
OpenCL device. At a precision of +-10px, the image required for storage/computation is
1/102 the size (1%). This performance improvement delines to nothing as precision reaches
1px. However, it may still be possible to sample only a subset of the full image, as long as
the translation function could still map these pixels to the exact location required on the base
image. A sample rate of 50% could yield up to a 2x theoretical performance improvement. In
testing, the sample rate was set to 25%, to give a theoretical 4x performance improvement,
although actual performance improvements seen were around 3x. The table below shows
performance improvements per sample rate. The performance improvement isn't linear due
to overhead from creating the GPU threads, transfering of the memory, setup of the main
loop in the GPU kernel, and calculations that take place outside of the main loop in the GPU
kernel.

Sample Rate (%) Theoretical Performance Observed Performance
Increase

100 1x 1x

25 4x 3.0x

11% 9x 4.3x

6% 16x 5.5x

4 25x 6.1x

Table 6. OpenCL image sample rate table

Also visible in the pseudocode in section 5.3.5 is the calls to the translation vectors.
These are implemented in Constant integer type arrays, and are accessed once per pixel in
each thread (in the innermost nested for loop). By declaring a new temporary private integer
type variable that can be used to store the specific translation vector for the thread, access
should be faster, since each thread now only has to access its private memory once per
loop, instead of shared constant region of memory once per loop. However when tested,
performance improvements were not seen, likely due to the OpenCL optimiser doing this
work already by caching these variables in a private memory.

Ideally, iterative development would have stopped once performance requirements
were met, however in practice, development was forced to end early due to time constraints.
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5.6. Implementation Issues and Challenges

5.6.1 Performance using the C-style Array

As detailed in section 4.6, the image2d_t can be used for storing the two
images, and providing the performance increase. However, there were some troubles
during implementation, which means it wasn’t implemented until very late in to the
development process. This is mainly due to a lack of understanding of the OpenCL
image2d_t type, and a lack of examples available for C++. More on this in section
5.6.2.

MegaPixels/Second vs threadcount
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Figure 9. Performance of OpenCL kernel on Radeon R9 290. measured in
Megapixels/second vs number of simultaneous GPU threads, using C-style arrays
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MegaPixels/Second vs threadcount
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Figqure 10. Performance of OpenCL kernel on Intel HD Graphics 515, measured in
Meqgapixels/second vs number of simultaneous GPU threads, using C-style arrays

MegaPixels/Second vs threadcount
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Figqure 11. Performance of OpenCL kernel on AMD Ryzen 1700x. measured in
Meqgapixels/second vs number of simultaneous GPU threads, using C-style arrays

An interesting challenge when using large (newer/faster many-core) GPUs,
was the amount of parallelism needed to exploit the full potential of the GPU. In
testing, figure 9, 200,000 threads for this specific workload was required to achieve
maximum performance from the Radeon R9 290 GPU, with 2/3rds of that
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performance being available at about 50,000 threads. Each line represents a
different image size that the device is working with. This is to show possible memory
bottlenecks on larger datasets (images). On a much smaller device, such as the Intel
HD Graphics 515 (see figure 10), peak performance was observed at around 1000
threads, with 2/3rds of that performance being available at just 27 threads. This
demonstrates the large difference in performance characteristics between OpenCL
programs, and the importance of designing the algorithm to be parallel enough for
the largest GPU devices. Since OpenCL is designed to target a wide variety of SIMD
devices, a CPU device is able to be targeted also. For experimentation, the AMD
Ryzen 1700x CPU was tested in the same way as the two GPU devices. Results
below in figure 11 show that many less threads are required to achieve peak
performance, because the CPU has many fewer SIMD processing units than a typical
GPU, even when taking in to account modern AVX instruction sets; Peak
performance is observed at just 343 threads, while 2/3rds of that performance is
available at just (and looking at the trend of the curve, possibly before) 27 threads.

5.6.2 Performance using the Image2D data type

Using the image2d_t data type results in a small speedup over using the
standard C array in testing, see figure 12. This was a surprisingly small performance
improvement from its theoretical advantages. This is because the image data type
can use the fast texture memory and dedicated parts of the GPU core for this task.

MegaPixels/Second vs threadcount
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Fiqure 12. Performance of OpenCL kernel on Radeon R9 290. measured in
Meqgapixels/second vs number of simultaneous GPU threads, using image2d
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5.6.2 Other Assorted Issues

Another major issue in development was an intermittent hard crash that was
experienced only in systems with dedicated GPUs (intel integrated graphics systems
are immune in testing), and when loading images over around 4Mpx to the GPU,
when running Windows 10. (Windows 7 systems are immune in testing) This hard
crash would vary in severity, however would most commonly result in a crash of the
display driver, which was sometimes recoverable, and on other systems, required a
power cycle. This remained a large problem throughout the development project
because it's near impossible to debug with the nature of the crash, the limited time
and resources available on this project, and the lack of guidance and documentation
on such issues available in the OpenCL programming guides, and the wider general
internet. Initial experimentation showed that if the GPU kernel code is set to not
return any results resulting from the computation of any part of the large C style
array, the issue becomes no longer present. As soon as the GPU kernel has to send
data back to the host where the data was created in part by the large C style array,
the issue returned. This problem was partially solved in the last iteration on
development, by sampling only a small section of the image, (leading to less work in
each thread, see Table 6 in section 5.5). This could be due to a timeout happening
on long-running GPU threads on some GPUs, and would explain why this doesn't
happen with multiple smaller threads instead.

More advanced tone mapping algorithms were not implemented due to time
constraints. A basic “average” based implementation is included, as this is one of the
more common algorithms, easy to implement, and shows the image alignment
function clearly in the rendered images.
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6. Testing and Evaluation

6.1 Performance Requirements

Performance requirements were tested during iterative development of the project, as
explained in section 5.2. Therefore, by the end of iterative development, all of the
performance requirements should have been met, however due the deadline for this project,
and a too-small contingency time buffer, performance requirements fall short in some tests.

Notes:

e Values provided below up to 3 significant figures where available.

e Cells in red and underlined indicate a incorrectly stitched image or an image with a

significant artefacts or warping, making the result unsatisfactory.

e Program Outputs can be seen in Appendix 5-9

Image Set Fastest Time target Time result PASS/FAIL
Software  for (% faster than
Image target)
Stitching and
Tone Mapping
a successful
result
Image Set 1 Autopano Pro 7.87s 3.93s PASS (200%)
Image Set 2 Autopano Pro 22.18s 17.7s PASS (125%)
Image Set 3 Hugin for [ 14.6s  (image | 18.8s* FAIL (77.6%)
Panorama alignment only)
Tools
Image Set 4 Autopano Pro 2.33s 1.49s PASS(156%)
Image Set 5 | PTGui ~23s 255s FAIL (9.02%)
(No Exposure
Change)
Image Set 6 | PTGui ~3s N/A** N/A*
(No Image
misalignment)

Table 7. Software Performance Requirements Resuits Table

1. *Image was not aligned correctly. From analysis of the output image, it seems that
there is another type of translation in the image set that was not accounted for in this
implementation, such as sheer. A preview of this is available in appendix 7.

2. **Since this implementation has no advanced tone mapping functions, this feature
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can’t be implemented.

In all of the tests run, performance is better in three of the tests, and worse in the
other two tests, one of which failed. In comparison to any single software from section 3, the
new software is able to match the best software for most image sets correctly aligned from
the test sets, and is able to do this in a faster time on more of the image sets than the best
software. For alignment, these results show promising options for GPU acceleration of image
registration in this use case.

rporation

Figure 13. Example Software Output (Image set 1)

By further analysis of the console output from running the program (see figure 13),
we can see that only a small section of the execution time was used by OpenCL in execution
alignment in the image (Only 51%).

Summary Events Memory Usage CPU Usage

® Record CPU Profile YFilter *  Search P
Function Name Total CPU [umit,... =
4 test2exe (PID: 25604) 15570 (100.003%:
__scrt_common_main_seh 14895 (95.66%)
main 14895 (95.66%)
run 14895 (95.66%)
align_2_images_GPU 14398 (92.47%)
render_image 8036 (51.61%)
[ owd | 3w
normalize_brightness 3359 (21.57%)
[E Call] roundf 3340 (21.45%)
stdvector<unsigned charst... 3204 (20.58%5)
calculate_best_translation_O... 2685 (17.31%)
stds_Vector_alloc<std:_Vec ... 2030 (13.04%)
resize_image_wector 1927 (12.38%)
std:_Vector_alloc<std::_ Vec ... 1619 (10.40%)
pow 1333 (8.56%)
[External Call] powf 1262 (8.11%)
std::_Cempressed_pair<stdii., 858 (5.51%)

Figure 14. CPU Profiling of new software (Image set 1)
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As figure 14 shows, a lot of the time was taken up by the render_image() function,
which takes in the two image and its alignment vector, and renders a new image with
tone-mapping. The round function name is the part of the render_image() function which
results in the poor performance. This is responsible for rounding the coordinates that the
translation vector gives when applied to an image. Since GPUs have texture units which can
handle interpolation like this natively, this would be a good candidate for OpenCL
implementation in future versions of this software. Another function which consumes a lot of
CPU time is the normalize_brightness() function, which is explained in section 5.3.3. This is
because each pixel needs to have the computational expensive formula applied to it to
adjust the gamma of each pixel. Since this is another embarrassingly parallel task, it
becomes a good candidate for either a multithreaded CPU or OpenCL based re-write.

6.3 Requirements Testing

Requirements from section 3.2 give this table, with expected results.

Test Num and | Test Description Test Input(s) | Expected Actual Outputs PASS/
Importance Output(s) FAIL
(Must/ Should/

Would-like

requirements)

1m, Must Merge at least 3 images Image Set 1 Merged Appendix 5 PASS
image
2m, Must Merge images with a | Image Set2 Merged Appendix 6 PASS
resolution of at least 16Mpx image
3m, Must Run on OpenCL enabled | OpenCL Program Program Uses | PASS
systems (Windows 10 will be | capable uses OpenCL functions
used in testing) system OpenCL as indicated in the
functions console output
over CPU
fallback
functions
4m, Must Save the output image Image Set 1 Saved image | Saved image as | PASS
as “New | “New Software
Software Output.jpg” see

Output.jpg” Appendix 5

5m, Must Ability to specify input | Move images | Merged Saved image as | PASS
images, for example, via | to be merged [ image “New Software
command line argument, or | N to folder Outputjpg”  see
in a config file. Salled » Appendix 5
source
6m, Must A basic “average pixel” tone | Image Set 1 Merged Saved image as | PASS
mapping algorithm to merge image “New Software
images once aligned. Output.jpg” see
Appendix 5
1s, Should Merge at least 8 images Image set 5 Merged Saved image as | PASS
image “New Software
Output.jpg” see
Appendix 9
2s, Should Merge images with a [ Image set 7 | Merged Saved image as | PASS
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resolution of at least 50Mpx (New set) image “New Software
Output.jpg” see
Appendix 10
(Compute time of
around 6.3s, 23
seconds required
per image for
tone-mapping and
saving)
3s, Should Run on all modern | Windows 10 | Merged Crash due to | FAIL*
computers (2 x86-64 CPU | VM with | Image using | missing OpenCL
cores, 8GB RAM, no | details as | CPU dll file.
dedicated-GPU, Windows 10 | described algorithm
will be used in testing) was created,
and Image
Set 1 was ran
as input
3s.a, Should Non-OpenCL performance | Manually Merged Saved image as | PASS
should be no more than 10x | specifying Image using | “New Software
slower than the OpenCL | CPU-Only CPU Output.jpg” Image
implementation. functions, algorithm is bitwise identical
Image set 1 within 39.3s to Appendix 5,
execution time of
9.05s
(4.3x slower)
4s, Should Preview the output image | Image set1 Preview  of | Preview of | PASS
before saving Appendix 5 Appendix 5
5s, Should Contain an indicator of | Image set 1 GUI or | Message for each | PASS
processing time or Command image passed, with
processing complete line indicator | time to process
percentage. of progress. each image
included
6s, Should A more advanced tone | N/A** N/A** N/A** FAIL
mapping  algorithm  with
parameters to change style
and look
7s, Should Save images as 10-bit JPEG | Image Set 1 Copy of | N/A** FAIL
output image
saved as
10-bit JPEG
1w, Would like Merge beyond 8 images Image set 5 Merged Saved image as | PASS
image “New Software
Output.jpg” see
Appendix 9
2w, Would like Full GUI with live previews, | N/A** N/A** N/A** FAIL
and sliders for adjusting the
tone mapping settings
3w, Would like Support full screen previews | N/A** N/A** N/A** FAIL
of images
4w, Would like Support a no-alignment [ N/A** N/A** N/A** FAIL
mode for where image
registration/translation is not
required.
Total: 18 Total
PASS:
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12/18

Table 8. Software Functional/Non-Functional Requirements Resuits Table
1. * To fix, a separate executable version of the program could be included with none of
the OpenCL code as requirements. This would allow users to select OpenCL or
non-OpenCL code when running the program manually. There are more intuitive
ways to do this.
2. **Feature(s) not implemented (see below)

As shown above in table 7, only 12/18 of these requirements have been met. This
was due to time constraints on the project given my starting experience in C++ and OpenCL,
and the limited contingency time in my project plan (see appendix 4). For example,
processing of 10-bit images for test 7s would require alterations to every function that
computes the transform, measure, tone-mapping and render functions, since all of the
compute is only calculated to a precision of 8 bits for efficiency. Changing this would require
functions to handle multiple data types, to keep optimum efficiency when working with 8-bit
depth (per channel) images. A GUI would have required more time spent learning C++ GUI
frameworks, and would have meant other more important features would have been missed.
Tone mapping features would have required less time to implement that GUI or multi-bit
depth images (such as the 10-bit images required for test 7s), due to the smaller complexity
in this task, however the architectural design of the software becomes an issue. As these
features were not taken in to account properly in the planning stage, a possible
implementation becomes harder and messier than necessary.

Deadlines set by the project plan were missed frequently throughout the project, due to
miss-estimations in the amount of time required for learning C++ and OpenCL. This can be
seen clearly in appendix 12. Experimentation with OpenCL was started much earlier in the
process via recommendation of the project supervisor. This because extremely important
since this took much longer than expected, and stopped the project from falling too far
behind. This in turn caused the literature review to start much later in the project timeline,
which in turn caused development to take longer since these tasks were done
simultaneously. Due to other commitments from other units at university, in early April, there
was no progress on this project. This caused the Validation and Evaluation to be rushed at
the end of the project. In future, more time will need to be set aside for learning new tools
and technologies when undertaking a project of this size. The included contingency time
helped me to catch up on the project towards the end when progress was falling far behind.
In future, some contingency time in the middle of the project timeline could be beneficial.
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7. Conclusion

In this document, a new software was proposed that would use OpenCL to
accelerate the process of aligning and merging images for use in multi-exposure HDR image
composition. Existing software was analysed to create a benchmark for the new software to
be compared against. In testing, the software was able to achieve a correct alignment in 4
out of 5 tests, faster than any other software tested in 3 out of 5 tests by using OpenCL to
exploit the power of GPGPU compute. It's shown here that by designing a new algorithm
specific for this particular to this use case (non-exposure matched images, translate and
rotate transformations only), large performance improvements can be seen by exploitation of
OpenCL, for the image alignment portion of the problem.

As previously noted, due to time constraints, tone-mapping was not implemented.
Software for this already exists that takes advantage of GPUs, with very impressive
performance characteristics (Fastvideo, 2019), showing that this is an excellent candidate for
an OpenCL implementation. This along with some of the features/improvements discussed
at the end of section 6.1 would make for good further work for this project. Other avenues to
research would include adding more translation options to the transform function, such as
sheer and scale translations.
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